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Diesel Fuel Processing
Technical Issues Addressed

• Diesel fuel is complex and difficult to reform :
• Diesel fuel is a complex, multi-component (>100 compounds) sulfur-

containing fuel that exhibits varying reaction pathways and kinetic 
rates for differing fuels and catalyst types.

• Deactivation of fuel reforming catalysts and fuel cell components via 
carbon deposition and sulfur poisoning are the principle technology 
barriers.

• System integration can be a significant challenge:
• Reformer integration with fuel cell system requires desulfurization, 

water management, and thermal considerations. 
• Certain FC applications may require high power density design with 

“fast” response and high efficiency for both steady-state and transient 
operations.

• Hydrocarbon slip must be avoided to provide fuel cell with a clean 
synthesis gas.
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Diesel Fuel Processing
R&D Objectives

• Develop fundamental understanding of diesel fuel processing 
and provide necessary tools and information to fuel cell/fuel 
process developers and system integrators for technology 
development, performance optimization, and system 
control.
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Diesel Fuel Processing
Technical Approach

• Utilize CFD Models to Understand 
and Address Heat and Mass 
Transfer Issues and Reactor 
Performance for Steady State and 
Transient Analysis

• Conduct Systems Analysis to Understand 
Reformer Integration and Operational 
Requirements

• Conduct Kinetic Rate Determination 
Studies in the Laboratory to Allow for 
Predictive Modeling and Design 
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Diesel Fuel Processing
Systems Analysis Results - High Efficiency Diesel Fuel Processor
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Goals:
- Maximize Thermal Integration
- Flexible System Startup

Diesel Fuel Processing
Systems Analysis Results - Integral Combustor/Reformer
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Diesel Fuel Processing
Systems Analysis Results - Effect of Heat Integration

Shared Heat Non-Shared Heat

Fuel (kg/hr) 0.834 0.834

Air – Stoichs In 5.5 5.2

ATR F/A Ratio 9 3.5

Steam/C Ratio 0.8 0.8

Efficiency 49.8 42.39

Net Power 5.0 4.221

ATR Temperature 800 800

FC Temperature 845 813
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Diesel Fuel Processing
Systems Analysis - Effect of Heat Integration 

Shared Heat Non-Shared Heat

Fuel (kg/hr) 0.834 0.834

Air – Stoichs In 5.5 5.5

ATR F/A Ratio 9 9

Steam/C Ratio 0.8 0.8

Efficiency 49.8 47.16

Net Power 5.0 4.734

ATR Temperature 800 565

FC Temperature 845 745
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Diesel Fuel Processing
Systems Analysis - Effect of Heat Integration 

800 C SECA APU
Non-Shared Heat Concept
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Diesel Fuel Processing
Systems Analysis - ATR Oxygen & Steam Sensitivity 
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• Develop a ATR model in Fluent
− Fuel atomization and vaporization
− Partial oxidation of diesel fuel
− Steam reforming of diesel fuel
− Combustion of anode exhaust gas

• Obtain reaction kinetic expressions from
− Catalyst manufacturer
− Literature
− Experiments

• Conduct steady state simulations and validate model with 
ATR experimental data

• Conduct transient simulations
− Use the simulation results to study reformer performance
− Export temperature fields into ANSYS and calculate the 

thermal stresses 

Diesel Fuel Processing
CFD Modeling - Approach
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Diesel Fuel Processing
CFD Modeling Results - ATR Model Prototype Geometry
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Diesel Fuel Processing
CFD Modeling Results - Reaction Zones
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ATR Model Inlet 
Conditions

Fuel Spray

C8H18

0.2 g/s

Nozzle Air

21% Vol. O2
79% Vol. N2

0.2g/s

650C/923K

Steam

0.18g/s

Anode Exhaust

5%Vol. H2
3%Vol. CO        
21% Vol. CO2
36% Vol. H2O        
35% Vol. N2

1.6g/s

800C/1073K

Cathode 
Exhaust

18% Vol. O2
82% Vol. N2
0.2g/s  
650C/923K
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ATR Model Results

CO Mole Fraction

H2 Mole Fraction
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Diesel Fuel Processing
Reaction Rate Determination - Modeling Approaches

Level 1
Intuitative Lumping

Level 2
Mechanism Based

Lumping

Level 3
Structure Oriented

Lumping

Level 4
Mechanistic

• Lumps derived from
intuition (gross
identification of
lumping groups), e.g.
paraffins, aromatics,
etc.

• Little is known
regarding the exact
mechanism

• Psuedo-1st order

• Psuedo-
homogeneous phase

• Easy to develop,
inexpensive

• Suitable for process
simulators, e.g.
ASPEN, ChemCad

• Predicts transient
response and
hydrocarbon slip

• Psuedo-
homogeneous phase

• Based on psuedo-
species lumped
together based on
the elucidation of a
detailed mechanism

• Requires a
knowledge of
process chemistry

• Must possess the
analytical ability to
measure the
psuedo-species only

• Suitable for process
simulators, e.g.
ASPEN, ChemCad

• Predicts transient
response,
hydrocarbon slip,
coking and catalyst
deactivation

• State of the art in
complex mixture
modeling

• Closely resembles
pure mechanistic
approach

• Involves lumping
isomers only

• Detailed knowledge
of process chemistry
needed, expensive
analytically

• Detailed kinetic
studies needed for
the development of
lumps

• Suitable for CFD
packages, e.g.
Fluent

• Pure mechanistic
approach

• Detailed kinetic
studies of single
components and
their mixtures

• Development of
experimental
procedures to
evaluate process
chemistry

• Knowledge of
catalyst properties
needed

• Requires
spectroscopic
method

• Predicts transient
response,
hydrocarbon slip,
coking and catalyst
deactivation based
on fundamentals
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Diesel Fuel Processing
Reaction Rate Determination - Complex Reaction Network
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Product Distribution from ATR of Diesel
(T=850 C, O2/C=0.3, S/C=1.5)
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Diesel Fuel Processing
Experimental Vs Predicted Values for Diesel ATR on Pt/Al2O3
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Diesel Fuel Processing
Experimental Vs Predicted Values for Diesel ATR on Pd/Al2O3
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Diesel Fuel Processing
Experimental Vs Predicted Values for Diesel ATR on Ru/Al2O3

R2 = 0.72
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• Diesel-based 5-kWe fuel cell APU system with 45% -
50% electrical conversion efficiency identified

• A prototype CFD model including all the key elements 
of ATR has been developed
− Developed a model that accounts for fuel atomization and 

vaporization, partial oxidation, steam gasification, and anode 
exhaust gas combustion

− Tested the convergence behavior of the model

• Laboratory Kinetic Experiments Conducted
− Tested Pt, Pd, and Ru catalysts
− Initial rate measurements made for hexadecane and diesel fuel

Diesel Fuel Processing
2002 Results Accomplishments
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• Diesel-based 5-kWe fuel cell APUs are considered a significant 
high volume market for SOFC’s.

• Fundamental understanding of diesel reforming and general 
methodology for kinetic rate determination would be very 
beneficial to catalyst developers.  May extend to hydrocarbon 
fuels in general. 

• A validated CFD model would be useful to fuel reforming 
developers and system integrators to predict steady-state and 
transient performance, develop control strategies, maximize 
efficiency, and minimize cost.

Diesel Fuel Processing
Applicability to SOFC Commercialization
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Diesel Fuel Processing
Future Plan

2002 2003 20062004 2005

PREDICTIVE CFD MODEL DEVELOPMENT FOR PREDICTIVE CFD MODEL DEVELOPMENT FOR 
DIESEL REFORMINGDIESEL REFORMING

- ValidateLEVEL 1 KINETIC MODELLEVEL 1 KINETIC MODEL
DEVELOPMENTDEVELOPMENT

LEVEL 2 KINETIC MODELLEVEL 2 KINETIC MODEL
DEVELOPMENTDEVELOPMENT - Validate

LEVEL 3 KINETIC MODELLEVEL 3 KINETIC MODEL
DEVELOPMENTDEVELOPMENT

DEVELOP KINETIC RATEDEVELOP KINETIC RATE
METHODOLOGYMETHODOLOGY

CONDUCT DESIGN & EVALUATION OF DIESEL REFORMING TECHNOLOGYCONDUCT DESIGN & EVALUATION OF DIESEL REFORMING TECHNOLOGY
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